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Scattering of oblique waves in a two-layer fluid

By C. M. L I N T O N AND J. R. C A D B Y
Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK
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We consider problems based on linear water wave theory concerning the interaction
of oblique waves with horizontal cylinders in a fluid consisting of a layer of finite
depth bounded above by a free surface and below by an infinite layer of fluid of
greater density. For such a situation time-harmonic waves can propagate with two
different wavenumbers K and k. The particular problems of wave scattering by
a horizontal circular cylinder in either the upper or lower layer are solved using
multipole expansions.

1. Introduction
The propagation of waves in a two-layer fluid with both a free surface and an

interface (in the absence of any obstacles) was first investigated by Stokes (1847)
and a description of some of the types of wave motion which can occur is given in
Lamb (1932, Art. 231). However, until recently, very little work has been done on
wave/structure interactions in two-layer fluids.

With the free surface approximated by a rigid lid Sturova (1994a) studied the
radiation of waves by an oscillating cylinder which is moving uniformly in a direction
perpendicular to its axis. Sturova (1999) later considered the radiation and scattering
problem for a cylinder in both a two- and a three-layer fluid bounded above and
below by rigid horizontal walls. For the three-layer case the middle layer was linearly
stratified representing a smooth pycnocline. Using the method of multipoles Sturova
was able to calculate the hydrodynamic characteristics of the cylinder. Gavrilov,
Ermanyuk & Sturova (1999) also investigated the effects of a smooth pycnocline on
wave scattering, again for a horizontal circular cylinder where the fluid is bounded
above and below by rigid walls. Their paper included a comparison between theor-
etical and experimental results, with reasonable qualitative agreement but notable
quantitative disagreement.

A simpler approach is to assume that the pycnocline is very thin and to model the
interface between the two fluids as a sharp discontinuity between layers of constant
density. We will make this simplifying assumption here, but in contrast to the papers
cited above, we will assume that the upper surface of the upper fluid is free, and
apply the linear free-surface boundary condition there. In the absence of obstacles,
the appropriate dispersion relation for such a two-layer fluid has two solutions for a
given frequency (Lamb 1932, Art. 231). One of these solutions corresponds to waves
where the majority of the disturbance is close to the free surface and the other to
waves on the interface between the two fluid layers.

When a wave is scattered by an obstacle there is the possibility that the wave
energy will be transferred between the two modes. Linton & McIver (1995, hereafter
referred to as LM) developed a general theory for two-dimensional wave scattering by
horizontal cylinders in an infinitely deep two-layer fluid, and calculated the amount of
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energy that was converted from one wavenumber to the other for the case of circular
cylinders in either the upper or lower fluid layer. They also systematically derived the
reciprocity relations that exist between the various hydrodynamic characteristics of
the cylinders. It is well-known that a circular cylinder submerged in an infinitely deep
uniform fluid reflects no wave energy, and it was shown in LM that this is also true
for a cylinder in the lower layer of a two-layer fluid (though when the cylinder is in
the upper layer this is no longer the case).

Work on three-dimensional scattering can be found in Yeung & Nguyen (1999)
and Cadby & Linton (2000). In the former work an integral equation technique
was employed to solve radiation and diffraction problems for a rectangular barge
in finite depth, whereas in the latter paper multipole expansions were used to solve
problems involving submerged spheres in infinite depth. The symmetry relations for
the added-mass and damping matrices and an analogue to the Haskind relations were
given in Yeung & Nguyen (1999); a more complete derivation of reciprocity relations
in three-dimensional scattering in two-layer fluids can be found in Cadby & Linton
(2000).

Other notable work on wave/structure interaction in two-layer fluids includes
Sturova (1994b), in which a hybrid element approach was used to compute added
mass and damping coefficients for an elliptic cylinder in the lower layer of a two-layer
fluid, and Zilman & Miloh (1995) and Zilman, Kagan & Miloh (1996), in which the
effects of a shallow layer of fluid mud on the hydrodynamics of floating bodies was
analysed. In Barthélemy, Kabbaj & Germain (2000) the scattering of surface waves
by a step bottom in a two-layer fluid was considered. This problem is of particular
interest in understanding how tides are scattered at the continental shelf break. A
WKBJ technique, which approximates the solution by simple travelling waves locally,
was employed to find the reflection and transmission coefficients of the surface waves
past the step and the proportion of the surface motion transferred to the interface.

In this paper we extend the work of LM to the case of oblique wave incidence and
use multipole expansions to solve scattering problems involving horizontal circular
cylinders. For the case of an incident wave on the interface we find some surprising
results. There is a critical angle (defined by the density ratio between the two fluids),
and for an incident wave angle above this no energy is transferred to the free surface in
the scattering process. For angles less than the critical angle, then energy transfer only
occurs at high enough frequencies. Within the regime where no energy transfer takes
place we find the phenomenon of zero transmission (and therefore total reflection) at
particular frequencies. The general problem of oblique wave incidence in two-layer
fluids is formulated in § 2 and then the case of a cylinder in the lower layer is treated
in § 3 and a cylinder in the upper layer is treated in § 4.

2. Formulation
Cartesian coordinates are chosen such that the (x, y)-plane coincides with the

undisturbed interface between the two fluids. The z-axis points vertically upwards
with z = 0 as the interface and z = d > 0 as the free surface. Under the usual
assumptions of linear water wave theory we can define a velocity potential in the
form

Φ(x, y, z, t) = Re{φ(x, z)eilye−iωt} (2.1)

and since Φ is harmonic, φ must satisfy the modified Helmholtz equation

(∇2
xz − l2)φ = 0. (2.2)
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The upper fluid, 0 < z < d, will be referred to as region I , whilst the lower fluid,
z < 0, will be referred to as region II . The potential in the upper fluid (of density ρI )
will be denoted by φI and that in the lower fluid (of density ρII > ρI ) by φII . If we
define ρ = ρI/ρII (< 1) then the linearized boundary conditions on the interface and
free surface are

φIz = φIIz on z = 0, (2.3)

ρ(φIz −KφI ) = φIIz −KφII on z = 0, (2.4)

φIz = KφI on z = d, (2.5)

where K = ω2/g, g being the acceleration due to gravity. The boundary conditions
(2.3) and (2.4) represent the continuity of normal velocity and pressure at the interface
respectively.

Within this framework progressive waves take the form (up to an arbitrary multi-
plicative constant)

φI = exp(±ix
√
u2 − l2)((u+K)eu(z−d) + (u−K)e−u(z−d)), (2.6)

φII = exp(±ix
√
u2 − l2)euz((u+K)e−ud − (u−K)eud), (2.7)

where u satisfies the dispersion relation

(u−K)(K(σ + e−2ud)− u(1− e−2ud)) = 0 (2.8)

in which σ = (1 + ρ)/(1− ρ). It follows that either u = K or u = k where

K(σ + e−2kd) = k(1− e−2kd). (2.9)

This equation has exactly one positive root k, which is always greater than K .
For the case u = K , progressive waves are thus of the form

φI = φII = e±iβxeKz, (2.10)

where β =
√
K2 − l2 and we clearly must have K > l. For the case u = k on the other

hand, we have

φI = e±ibxg(z), φII = e±ibxekz, (2.11)

where b =
√
k2 − l2 and

g(z) =
Kσ − k
K(σ − 1)

ekz +
K − k
K(σ − 1)

e−kz. (2.12)

In this case we require k > l for the waves to exist. A general scattered potential thus
has the far-field behaviour described by

φI ∼ A±e±iβxeKz + B±e±ibxg(z) + C±e∓iβxeKz + D±e∓ibxg(z), (2.13)

φII ∼ A±e±iβxeKz + B±e±ibxekz + C±e∓iβxeKz + D±e∓ibxekz, (2.14)

as x→ ±∞, for which a convenient shorthand is

φ ∼ {A−, B−, C−, D−;A+, B+, C+, D+}. (2.15)

An incident plane wave φinc of wavenumber K making an angle αinc (0 6 αinc <
1
2
π)

with the positive x-axis has the form (in both layers)

φinc = eiKx cos αinceKz. (2.16)
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Figure 1. Cut-off frequency Kcd due to an incident wave of wavenumber k; ρ = 0.5.

In this case

l = K sin αinc, β = K cos αinc, b =

√
k2 −K2 sin2 αinc. (2.17)

We know that b is real since k > K and so scattered waves of wavenumber k will
exist for all values of K and all angles αinc. The angle αk of the scattered waves of
wavenumber k is given by

tan αk =
l

b
=

K sin αinc√
k2 −K2 sin2 αinc

. (2.18)

Since b > β we know that tan αk < tan αinc and hence |αk| < αinc.
An incident plane wave of wavenumber k making an angle αinc with the positive

x-axis is given by

φIinc = eikx cos αincg(z), φIIinc = eikx cos αincekz. (2.19)

In this case

l = k sin αinc, β =

√
K2 − k2 sin2 αinc, b = k cos αinc. (2.20)

For a given angle αinc there maybe a value of K for which K = k sin αinc and thus
β = 0. We will call this the cut-off frequency and denote it by Kc. For K > Kc we have
real β and so waves of wavenumber K will propagate in the fluid. When K < Kc,
however, β will be imaginary, corresponding to an evanescent mode, and hence we
have no propagating waves of wavenumber K . From the dispersion relation (2.9) we
have

Kcd = 1
2

sin αinc ln

(
1 + sin αinc

1− σ sin αinc

)
. (2.21)

Figure 1 shows the cut-off frequency Kcd, plotted against incident wave angle, for
a density ratio of ρ = 0.5 (σ = 3). There is a critical angle αc, given by sin−1(1/σ),
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such that as αinc → αc we have Kcd → ∞ and for αinc > αc there are no propagating
waves of wavenumber K for any frequency. When they do exist, the angle αK of the
scattered waves of wavenumber K is given by

tan αK =
k sin αinc√

K2 − k2 sin2 αinc

, (2.22)

and |αK | > αinc.
Relations between the various hydrodynamic quantities that arise in scattering

problems can be obtained by using Green’s theorem. The approach is almost identical
to that described in LM and the formulas derived in that paper (equations (2.19)–
(2.56)) for the case of normal incidence carry over to the oblique incidence case,
except that now J = Jk/JK where

JK = iβ

(
1

K
+ 2ρ

∫ d

0

e2Kzdz

)
, Jk = ib

(
1

k
+ 2ρ

∫ d

0

[g(z)]2dz

)
. (2.23)

The scattering of an incident wave of wavenumber K can be characterized by

φK ∼ {RK, rK, 1, 0;TK, tK, 0, 0}, (2.24)

where RK and rK are the reflection coefficients, and TK and tK are the transmission
coefficients of wavenumbers K and k, respectively, and we have

|RK |2 + |TK |2 + J(|rK |2 + |tK |2) = 1. (2.25)

For an incident wave of wavenumber k the velocity potential is characterized by

φk ∼ {Rk, rk, 0, 1;Tk, tk, 0, 0}, (2.26)

and

|Rk|2 + |Tk|2 + J(|rk|2 + |tk|2) = J. (2.27)

It is convenient to define energies as follows:

ER
K = |RK |2, ET

K = |TK |2, Er
K = J|rK |2, Et

K = J|tK |2, (2.28)

ER
k = |Rk|2/J, ET

k = |Tk|2/J, Er
k = |rk|2, Et

k = |tk|2. (2.29)

The energy relations (2.25) and (2.27) then become

ER
j + ET

j + Er
j + Et

j = 1, j = k or K. (2.30)

This equation was used as a numerical check on all results obtained for the reflection
and transmission coefficients.

Equation (2.30) relates different far-field quantities that arise in the same scattering
problem. Many of the other relations derived in LM relate quantities from different
problems (for example, ER

K + ET
K = Er

k + Et
k). These relations only apply to oblique

scattering when the value of l is the same for both problems. For example, say we
wish to relate a scattering problem with potential φK and angle of incidence αKinc to a
problem with potential φk and angle αkinc. If we assign a value to αKinc then the angle
αkinc is given by

αkinc = sin−1

(
K

k
sin αKinc

)
(2.31)

and since k > K there will always be an angle αkinc. However, unlike the normal
incidence relations, we can only relate the results between the two problems at one
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particular frequency. (Or alternatively, the angle of incidence for the related problem
depends on the frequency.) If we assign αkinc a value then

αKinc = sin−1

(
k

K
sin αkinc

)
. (2.32)

When K < Kc or when αkinc > αc we will not be able to use such relations.

3. Cylinder in the lower fluid
A horizontal circular cylinder of radius a has its axis at z = f < 0 and its generator

runs parallel to the y-axis. Polar coordinates (r, θ) are defined in the (x, z)-plane where

x = r sin θ and z = f − r cos θ. (3.1)

Symmetric and antisymmetric multipoles, φsn (n > 0) and φan (n > 1), respectively, are
defined by

φIsn = (−1)n
∫ ∞

0

^ cosh nu cos (lx sinh u)[AL(u)evz + BL(u)e−vz] du, (3.2)

φIIsn = Kn(lr) cos nθ + (−1)n
∫ ∞

0

^ cosh nu cos (lx sinh u)evzCL(u) du, (3.3)

φIan = (−1)n+1

∫ ∞
0

^ sinh nu sin (lx sinh u)[AL(u)evz + BL(u)e−vz] du, (3.4)

φIIan = Kn(lr) sin nθ + (−1)n+1

∫ ∞
0

^ sinh nu sin (lx sinh u)evzCL(u) du, (3.5)

where v = l cosh u,

AL(u) = K(1 + σ)(v +K)ev(f−2d)/(v −K)h(v), (3.6)

BL(u) = K(1 + σ)evf/h(v), (3.7)

CL(u) = (v +K)[(v +Kσ)e−2vd − v +K]evf/(v −K)h(v), (3.8)

and

h(v) = (v +K)e−2vd − v +Kσ. (3.9)

The functions φsn and φan are singular solutions to the modified Helmholtz equation
which satisfy all of the boundary conditions (including an outgoing radiation con-
dition), except that on the body boundary. We note that the functions (3.6)–(3.8) are
the same as (3.7)–(3.9) in LM with u replaced by v(= l cosh u).

From the dispersion relation we see that h(k) = 0, and hence the multipoles have
poles at u = γ1 and u = γ2, where

l cosh γ1 = K and l cosh γ2 = k. (3.10)

For l > K there is only one pole at u = γ2. The far-field form of the multipoles, in
the lower fluid, is given by

φIIsn ∼ (−1)nπi(Cγ1

L cosh nγ1 e±iβxeKz + C
γ2

L cosh nγ2 e±ibxekz), (3.11)

φIIan ∼ ∓(−1)nπ(Cγ1

L sinh nγ1 e±iβxeKz + C
γ2

L sinh nγ2 e±ibxekz), (3.12)
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as x→ ±∞. Here Cγ1

L and Cγ2

L are the residues of CL(u) at u = γ1 and u = γ2, given by

C
γ1

L =
2K(1 + σ)eK(f−2d)

β(2e−2Kd − 1 + σ)
(3.13)

and

C
γ2

L =
(k +K)ekf[(k +Kσ)e−2kd − k +K]

b(k −K)[(1− 2d(k +K))e−2kd − 1]
. (3.14)

The multipoles can be expanded in polar coordinates. If we put X = −lr and
T = exp(i[θ + iu]) in the well-known generating function (see, for example, Ursell
2001)

exp[ 1
2
X(T + T−1)] =

∞∑
m=0

1
2
εm(Tm + T−m)Im(X), (3.15)

where ε0 = 1, εm = 2, m > 1, and then take the real and imaginary parts, the resulting
expressions can be substituted into (3.3) and (3.5), using (3.1), to give

φIIsn = Kn(lr) cos nθ +

∞∑
m=0

AsnmIm(lr) cosmθ, (3.16)

φIIan = Kn(lr) sin nθ +

∞∑
m=1

AanmIm(lr) sinmθ, (3.17)

where

Asnm = εm(−1)m+n

∫ ∞
0

^ coshmu cosh nu evfCL(u) du, (3.18)

Aanm = 2(−1)m+n

∫ ∞
0

^ sinhmu sinh nu evfCL(u) du. (3.19)

Incident wavenumber K

Let us consider the case of an incident plane wave of wavenumber K making an
angle αinc with the positive x-axis, so that l = K sin αinc. The incident wave potential,
(2.16), when expanded about r = 0 has the form (in both layers)

φinc = eiβxeKz = eKf
∞∑
m=0

εm(−1)mIm(lr)(coshmγ cosmθ − i sinhmγ sinmθ), (3.20)

where cosh γ = K/l = 1/ sin αinc. We write the velocity potential as

φK = φinc +

∞∑
m=0

(αmφ
a
m + βmφ

s
m), (3.21)

where αm and βm are unknown coefficients and α0 is included for notational con-
venience. To solve for αm and βm we substitute the polar expansions of the multipoles
and of the incident wave into (3.21) and apply the body boundary condition ∂φK/∂r =
0 on r = a. We then use the orthogonality of the trigonometric functions to obtain
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infinite systems of equations for the unknowns αm and βm which are

αn + Zn

∞∑
m=1

αmA
a
mn = 2i(−1)nZne

Kf sinh nγ, n = 1, 2, . . . , (3.22)

βn + Zn

∞∑
m=0

βmA
s
mn = εn(−1)n+1Zne

Kf cosh nγ, n = 0, 1, . . . , (3.23)

where Zn = I ′n(la)/K ′n(la). These systems can be solved by truncation and in the
computations presented below 5 × 5 systems were used. When the cylinder has
submergence f/a = −2 this yields five-decimal-place accuracy whereas for f/a = −1.1
we have three-decimal-place accuracy.

The far-field form for φK , in the lower fluid layer, can be written as

φIIK ∼
{

eiβxeKz + RKe−iβxeKz + rKe−ibxekz, x→ −∞,
TKeiβxeKz + tKeibxekz, x→ +∞. (3.24)

Using (3.21), (3.11) and (3.12) we can extract the reflection and transmission coef-
ficients:

TK = 1 + πCγ1

L

∞∑
m=0

(−1)m(−αm sinhmγ1 + iβm coshmγ1), (3.25)

RK = πCγ1

L

∞∑
m=0

(−1)m(αm sinhmγ1 + iβm coshmγ1), (3.26)

tK = πCγ2

L

∞∑
m=0

(−1)m(−αm sinhmγ2 + iβm coshmγ2), (3.27)

rK = πCγ2

L

∞∑
m=0

(−1)m(αm sinhmγ2 + iβm coshmγ2). (3.28)

Incident wavenumber k

We now consider the case of an incident plane wave of wavenumber k making an
angle αinc with the positive x-axis, so that l = k sin αinc, and

φIIinc = eibxekz = ekf
∞∑
m=0

εm(−1)mIm(lr)(coshmγ cosmθ − i sinhmγ sinmθ), (3.29)

where cosh γ = k/l = 1/ sin αinc. The velocity potential φk for this scattering problem
can again be expanded in multipoles using (3.21) and the equations for αm and βm are
given by (3.22) and (3.23) as before, except that exp(Kf) must be replaced by exp(kf).

The far-field form for φk , in the lower fluid layer, can be written as

φIIk ∼
{

eibxekz + Rke
−iβxeKz + rke

−ibxekz, x→ −∞,
Tke

iβxeKz + tke
ibxekz, x→ +∞. (3.30)

Using the far-field forms of the multipoles (3.11) and (3.12) with the expansion of φk
we find that the expressions for Rk and rk are the same as those for RK and rK given,
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respectively, by (3.26) and (3.28). For the transmission coefficients we have

Tk = πCγ1

L

∞∑
m=0

(−1)m(−αm sinhmγ1 + iβm coshmγ1), (3.31)

tk = 1 + πCγ2

L

∞∑
m=0

(−1)m(−αm sinhmγ2 + iβm coshmγ2). (3.32)

For values of K less than the cut-off frequency Kc there are no waves of wavenumber
K propagating to infinity and so Tk = Rk = 0.

Results

In figures 2 and 3 the reflection and transmission energies are shown for the case of
a wave of wavenumber K (a free-surface mode) incident on a cylinder in the lower
fluid layer. In all these plots the immersion depth f/a is −2, the depth of the upper
fluid layer d/a is 2 and the density ratio ρ is 0.5. For a two-layer fluid consisting of
fresh water and salt water the value of ρ would be around 0.97. The same qualitative
features are observed for such a density ratio, but the effects of the interface are much
smaller. The different curves correspond to different angles of incidence αinc, which are
1.35, 1.4, 1.53 and 1.56 covering the range between about 75◦ and 89◦. These values
were chosen to illustrate the scattering behaviour when the angle of the incident wave
approaches that of grazing (π/2). From figure 2 we see that as the angle of incidence
increases, ET

K decreases while ER
K increases. This effect is also observed in the oblique

scattering problem in a single-layer fluid. The transmission and reflection energies of
the waves of wavenumber k, shown in figure 3, are small in comparison to those of
the incident wavenumber K but show that there is some conversion of energy from
one wavenumber to the other. As αinc → π/2, for fixed K , we see that Et

K , Er
K and

ET
K tend to zero whereas ER

K tends to unity. (For the single-layer problem Levine
(1965) showed analytically, based on a low-order truncation of an infinite system,
that TK→ 0 while RK → −1 in this limit.) Computations show that as αinc → 0 the
results tend to those for normal incidence given in LM. In particular, as αinc → 0
both ER

K and Er
K tend to zero.

The case of an incident wave of wavenumber k (an interfacial mode) is more
interesting due to the presence of the cut-off frequency, below which no energy is
converted from one wavenumber to the other. Figures 4 and 5 show the transmission
and reflection energies for this case, when the immersion depth of the cylinder is
f/a = −1.1 and we have the values d/a = 2 and ρ = 0.5, as before. Each plot shows
the results obtained for four different angles αinc of the incident wave close to the
critical angle, 0.3, 0.32, 0.33, and 0.34 (17.19◦–19.48◦). When αinc = 0.34, which is
greater than the critical angle αc = 0.3398 for the given parameter values, we have
no waves of wavenumber K propagating in the fluid. For the remaining angles of
incidence we have the following cut-off frequencies: Kca ≈ 0.180, 0.248 and 0.313.
Only for frequencies greater than the cut-off will there be conversion of energy from
one mode to the other. The transmission and reflection energies for the incident
wavenumber are shown in figure 5. For a particular frequency just less than the cut-
off there is zero transmission and full reflection of the incident wave. As αinc increases
the frequency at which this zero of transmission occurs increases and the spike from
which it comes broadens. When αinc = 0.34 there are in fact two zeros of transmission,
the second occurring at a higher frequency than those shown on the plot.

Further examples in which there are two zeros of transmission are shown in
figures 6(a) and 6(b). Both these plots show the reflected energy of an incident wave
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Figure 2. (a) Transmission and (b) reflection energies due to a wave of wavenumber K incident
on a cylinder in the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0.

of wavenumber k where the values ρ = 0.5 and αinc = 0.34 have been used (since
αinc > αc in this case there is no energy converted to wavenumber K and hence
a zero of transmission corresponds to total reflection at the incident wavenumber).
In figure 6(a) the submergence of the cylinder is fixed at −1.95 and each curve
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Figure 3. (a) Transmission and (b) reflection energies due to a wave of wavenumber K incident
on a cylinder in the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −2.0.

corresponds to a different depth of the upper fluid layer, d/a = 2.7, 2.5, 2.2 and 2.
When d/a ≈ 2.5 we see there is just one frequency of full reflection. As the depth
of the upper fluid layer decreases this splits and gives two frequencies at which total
reflection exists. A similar effect is observed when fixing the depth of the upper fluid
and varying the submergence of the cylinder as in figure 6(b). The occurrence of zeros
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Figure 4. (a) Transmission and (b) reflection energies due to a wave of wavenumber k incident on
a cylinder in the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1.

of transmission is somewhat surprising as normally incident waves on a cylinder in
the lower fluid are completely transmitted at all frequencies (see LM); moreover, they
do not occur in the single-layer oblique-incidence problem.

For the scattering of an incident wave k as αinc → π/2 we find that Er
k → 1 while all

the other energies tend to zero. As αinc → 0 we again find that the results tend to those
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Figure 5. (a) Transmission and (b) reflection energies due to a wave of wavenumber k incident on
a cylinder in the lower layer; ρ = 0.5, d/a = 2.0 and f/a = −1.1.

of the normal-incidence case. If we let ρ → 0 in this problem then it can be shown
that the multipoles defined by (3.3) and (3.5) go over to the equivalent single-layer
multipoles for infinite depth (given in Linton & McIver 2001, for example). Thus by
letting ρ→ 0 in the above analysis we recover the results for the scattering of oblique
waves by a horizontal cylinder in deep water.
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Figure 6. Reflection energies due to a wave of wavenumber k incident on a cylinder in the lower
layer; ρ = 0.5 and αinc = 0.34: (a) f/a = −1.95, (b) d/a = 2.0.
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4. Cylinder in the upper fluid
We now consider the case of a cylinder positioned in the upper fluid layer, f/a > 1.

Polar coordinates are again defined via (3.1) and suitable multipoles take the form

φIsn = Kn(lr) cos nθ +

∫ ∞
0

^ cosh nu cos (lx sinh u)[A(0)
Un(u)e

vz + B
(0)
Un(u)e

−vz] du, (4.1)

φIIsn =

∫ ∞
0

^ cosh nu cos (lx sinh u)evzC (0)
Un(u) du, (4.2)

φIan = Kn(lr) sin nθ +

∫ ∞
0

^ sinh nu sin (lx sinh u)[A(1)
Un(u)e

vz + B
(1)
Un(u)e

−vz] du, (4.3)

φIIan =

∫ ∞
0

^ sinh nu sin (lx sinh u)evzC (1)
Un(u) du, (4.4)

where

A
(q)
Un(u) = (v +K)e−2vd[(−1)n+q+1(v −Kσ)evf − (v −K)e−vf]/(v −K)h(v), (4.5)

B
(q)
Un(u) = [(−1)n+q+1(v +K)ev(f−2d) − (v −K)e−vf]/h(v), (4.6)

C
(q)
Un(u) = K(1− σ)B(q)

Un(u)/(v −K). (4.7)

We note that the functions (4.5)–(4.7) are the same as (4.7)–(4.9) in LM with u
replaced by v (= l cosh u). When l < K , the multipoles have poles at u = γ1 and
u = γ2, defined by (3.10) as before, whereas for l > K there is only one pole at u = γ2.

The far-field form of these multipoles, in the lower fluid layer, is given by

φIIsn ∼ πi(C (0)γ1

Un cosh nγ1e
±iβxeKz + C

(0)γ2

Un cosh nγ2e
±ibxekz), (4.8)

φIIan ∼ ±π(C (1)γ1

Un sinh nγ1e
±iβxeKz + C

(1)γ2

Un sinh nγ2e
±ibxekz), (4.9)

as x→ ±∞, where

C
(q)γ1

Un =
(−1)n+q+12K(1− σ)eK(f−2d)

β(2e−2Kd − 1 + σ)
(4.10)

and

C
(q)γ2

Un =
K(1− σ)[(−1)n+q+1(k +K)ek(f−2d) − (k −K)e−kf]

b(k −K)[(1− 2d(k +K))e−2kd − 1]
. (4.11)

The polar expansions of the multipoles are

φIsn = Kn(lr) cos nθ +

∞∑
m=0

BsnmIm(lr) cosmθ, (4.12)

φIan = Kn(lr) sin nθ +

∞∑
m=1

BanmIm(lr) sinmθ, (4.13)

where

Bsnm = εm

∫ ∞
0

^ coshmu cosh nu ((−1)mA(0)
Un(u)e

vf + B
(0)
Un(u)e

−vf) du, (4.14)

Banm = 2

∫ ∞
0

^ sinhmu sinh nu ((−1)m+1A
(1)
Un(u)e

vf + B
(1)
Un(u)e

−vf) du. (4.15)
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Incident wavenumber K

The potential φK can again be expanded using (3.21), in which the incident wave
is given by (3.20) as before, but we now use the multipole expansions developed
for the upper fluid layer, (4.1)–(4.4). After applying the body boundary condition,
∂φK/∂r = 0 on r = a, we obtain exactly the same systems of equations for αn and
βn as before, (3.22) and (3.23), except with Aamn and Asmn replaced by Bamn and Bsmn,
respectively. These equations were solved by truncating to 4 × 4 systems to produce
the results presented below. The accuracy achieved with this truncation parameter
was three decimal places.

The transmission and reflection coefficients can extracted from the far-field form
of the potential φK . Using (3.21), (4.8) and (4.9) with (3.24) we obtain

TK = 1 + π

∞∑
m=0

(αmC
(1)γ1

Um sinhmγ1 + iβmC
(0)γ1

Um coshmγ1), (4.16)

RK = π

∞∑
m=0

(−αmC (1)γ1

Um sinhmγ1 + iβmC
(0)γ1

Um coshmγ1), (4.17)

tK = π

∞∑
m=0

(αmC
(1)γ2

Um sinhmγ2 + iβmC
(0)γ2

Um coshmγ2), (4.18)

rK = π

∞∑
m=0

(−αmC (1)γ2

Um sinhmγ2 + iβmC
(0)γ2

Um coshmγ2). (4.19)

Incident wavenumber k

For this problem φinc is given, in the upper fluid, by exp(ibx)g(z), where g(z) is defined
in (2.12). The polar expansion is

φIinc =
1

K(σ − 1)

∞∑
m=0

εmIm(lr)[((−1)mekf(Kσ − k) + e−kf(K − k)) cosmθ coshmγ

+i((−1)m+1ekf(Kσ − k) + e−kf(K − k)) sinmθ sinhmγ], (4.20)

where cosh γ = k/l = 1/ sin αinc. The velocity potential φk is expanded as in (3.21),
where φsm and φam are the symmetric and antisymmetric multipoles developed for
the upper fluid. After application of the body boundary condition we obtain the
equations

αn + Zn

∞∑
m=1

αmB
a
mn =

2iZn
K(σ − 1)

((−1)nekf(Kσ − k)− e−kf(K − k)) sinh nγ, (4.21)

βn + Zn

∞∑
m=0

βmB
s
mn =

εnZn

K(σ − 1)
((−1)n+1ekf(Kσ − k)− e−kf(K − k)) cosh nγ. (4.22)

The expressions for Rk and rk are the same as those for RK and rK given, respectively,
by (4.17) and (4.19). For the transmission coefficients we have

Tk = π

∞∑
m=0

(αmC
(1)γ1

Um sinhmγ1 + iβmC
(0)γ1

Um coshmγ1), (4.23)

tk = 1 + π

∞∑
m=0

(αmC
(1)γ2

Um sinhmγ2 + iβmC
(0)γ2

Um coshmγ2). (4.24)
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Figure 7. (a) Transmission and (b) reflection energies due to a wave of wavenumber K incident
on a cylinder in the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.

Results

Figures 7–8 show the reflection and transmission energies for an incident wave of
wavenumber K (a free-surface mode) on a cylinder submerged in the upper fluid
layer. The submergence of the cylinder f/a is fixed at 1.25, the depth d/a of the upper



360 C. M. Linton and J. R. Cadby

αinc =1.35

Et
K 0.04

0.03

0.02

0.01

0 0.2 0.4 0.6 0.8 1.0

Ka

(a)

1.40
1.53
1.56

Er
K

0.020

0.016

0.012

0.008

0.004

0 0.2 0.4 0.6 0.8 1.0

Ka

(b)

0.06

0.05

0.08

0.07

Figure 8. (a) Transmission and (b) reflection energies due to a wave of wavenumber K incident
on a cylinder in the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.

fluid layer is 2.5 and the density ratio ρ is 0.5. The different curves correspond to four
different angles of incidence, αinc = 1.35, 1.4, 1.53 and 1.56. These angles are same as
those used in figures 2 and 3. The results are similar to those for the scattering of an
incident wave of wavenumber K by a cylinder in the lower fluid layer and display
the same trends.
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Figure 9. (a) Transmission and (b) reflection energies due to a wave of wavenumber k incident on
a cylinder in the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.

Figures 9 and 10 show reflection and transmission energies of an incident wave
of wavenumber k (an interfacial mode) on a cylinder submerged in the upper fluid
layer. The parameter settings are the same as in figures 7 and 8 and the different
curves correspond to αinc = 0.3, 0.32, 0.33 and 0.34. The critical angle αc is 0.3398
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Figure 10. (a) Transmission and (b) reflection energies due to a wave of wavenumber k incident
on a cylinder in the upper layer; ρ = 0.5, d/a = 2.5 and f/a = 1.25.

and the cut-off frequencies for the first three angles are Kca ≈ 0.144, 0.198 and 0.250,
respectively. Again there are similarities with the case of the cylinder in the lower
fluid shown in figures 4 and 5. Energy conversion between wavenumbers only occurs
for frequencies greater than the cut-off frequency as shown in figures 9(a) and 9(b).
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Figure 11. Transmission energies due to a wave of wavenumber k incident on a cylinder in the
upper layer; ρ = 0.5, d/f = 2 and αinc = 0.35.

Figures 10(a) and 10(b) show the transmitted and reflected energies at the incident
wavenumber. There is a zero of transmission occurring before the cut-off frequency.
However, unlike in the case shown in figures 5(a) and 5(b), we have a point of total
transmission preceding this. As the angle of incidence is increased the frequencies of
these pairs of zero and total transmission increase and also separate.

More than one zero of transmission may occur for a given geometry. This is
illustrated in figure 11 which shows the transmission energies Et

k for an incident wave
of wavenumber k with angle αinc = 0.35, which is greater than the critical angle.
The ratio of the depth of the upper fluid layer to the submergence of the cylinder is
fixed at d/f = 2 so that the cylinder is always halfway between the interface and the
free surface. The different curves correspond to the values d/a = 2.24, 2.238, 2.234
and 2.23. For all the curves there is a frequency of total transmission at Ka ≈ 0.213
followed immediately by a zero of transmission at Ka ≈ 0.227. When d/a = 2.24 we
have a local minimum at Ka ≈ 1.825 and as the depth of the upper fluid layer is
decreased, bringing the free surface and interface closer to the surface of the cylinder,
we obtain another zero of transmission. As the depth is decreased further this splits
and we obtain a total of three zeros of transmission.

If we let ρ → 0 in this problem then the multipoles defined by (4.1) and (4.3) go
over to the single-layer multipoles for finite depth (given in Linton & McIver 2001,
for example). Thus by letting ρ → 0 we can recover the results for the scattering of
oblique waves by a horizontal circular cylinder in finite water depth.

5. Conclusion
In this paper we have studied the problem of oblique wave scattering by horizontal

cylinders in two-layer fluids using linear water wave theory. The upper layer is of
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finite thickness and is bounded above by a free surface and below by an infinite layer
of fluid of greater density. In this situation waves can propagate at two different
wavenumbers for the same frequency, one of which corresponds to a free-surface
disturbance and the other to an interfacial wave motion. When the incident wave is
on the free surface we always find energy transfer to the interface, but for incident
interfacial waves there are parameter ranges for which no energy transfer to the free
surface is possible.

We have analysed the scattering problem of oblique waves by a horizontal circular
cylinder submerged in either the upper or lower layer of a two-layer fluid using
multipole expansions. When the cylinder is positioned in the lower fluid layer and
waves are normally incident upon it, it was shown in LM that all the energy is
transmitted. We have shown that this is not true for oblique waves. We have found
that for oblique waves incident along the interface when a cylinder is in either fluid
layer there are isolated frequencies at which all the incident energy is reflected.
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Barthélemy, E., Kabbaj, A. & Germain, J.-P. 2000 Long surface wave scattered by a step in a
two-layer fluid. Fluid Dyn. Res. 26, 235–255.

Cadby, J. R. & Linton, C. M. 2000 Three-dimensional water-wave scattering in two-layer fluids.
J. Fluid Mech. 423, 155–173.

Gavrilov, N., Ermanyuk, E. & Sturova, I. 1999 Scattering of internal waves by a circular cylinder
submerged in a stratified fluid. In Proc. 22nd Symposium on Naval Hydrodynamics, ONR,
pp. 907–919.

Lamb, H. 1932 Hydrodynamics (6th Edn). Cambridge University Press. Reprinted 1993.

Levine, L. 1965 Scattering of surface waves by a submerged circular cylinder. J. Math. Phys. 6,
1231–1243.

Linton, C. M. & McIver, M. 1995 The interaction of waves with horizontal cylinders in two-layer
fluids. J. Fluid Mech. 304, 213–229 (referred to herein as LM).

Linton, C. M. & McIver, P. 2001 Handbook of Mathematical Techniques for Wave/Structure
Interactions. Chapman & Hall/CRC, Boca Raton.

Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–455. Reprinted
in Mathematical and Physical Papers, vol. 1, pp. 314–326. Cambridge University Press.

Sturova, I. V. 1994a Planar problem of hydrodynamic shaking of a submerged body in the presence
of motion in a two-layered fluid. J. Appl. Mech. Tech. Phys. 35, 670–679.

Sturova, I. V. 1994b Plane problem of hydrodynamic rocking of a body submerged in a two-layer
fluid without forward speed. Fluid Dyn. 29, 414–423.

Sturova, I. V. 1999 Problems of radiation and diffraction for a circular cylinder in a stratified fluid.
Fluid Dyn. 34, 521–533.

Ursell, F. 2001 The local expansion of a source of oblique water waves in the free surface. Wave
Motion 33, 109–116.

Yeung, R. W. & Nguyen, T. 1999 Radiation and diffraction of waves in a two-layer fluid. In Proc.
22nd Symposium on Naval Hydrodynamics, ONR, pp. 875–891.

Zilman, G., Kagan, L. & Miloh, T. 1996 Hydrodynamics of a body moving over a mud layer –
Part II: Added-mass and damping coefficients. J. Ship Res. 40, 39–45.

Zilman, G. & Miloh, T. 1995 Hydrodynamics of a body moving over a mud layer – Part I: Wave
resistance. J. Ship Res. 39, 194–201.


